Stanford University Winter 2001-2002

ME235B Finite Element Analysis

Professor Peter M. Pinsky

Welcome to the ME235B web site for the Winter 2001-2002 quarter!


Announcements


Assignments

    Problem Set 1. (due Jan 17)  

        Exercise 1 on page 169

        Exercise 1 on page 420

 

    Problem Set 2. (due Jan 29)

        Exercise 1 (page 424)

        Show symmetry and positive-definiteness of the element and global mass matrices (elastodynamics).

        Exercise 1 (page 432)

        Exercise 2 (page 433)

        Exercise 7 and 8 (page 445)

 

    Problem Set 3 (due Feb 7)

        Exercise 1 (page 462)

        Derive the v-, d-, d'-forms of the generalized trapezoidal rule.

        Derive (8.2.21).

        Commutative diagram (page 465) - show the details of modal decomposition of the fully discrete equations and the                                                              temporal discretization of the semidiscrete modal equations.

 

    Problem Set 4 (due Feb 14)

        Exercise 3, 4 (page 474)

        Exercise 6 (page 475)

 

    Problem Set 5 (due Feb 28)

        Exercise 1 (page 492)

        Exercise 2, 3 (page 495)

        Exercise 4 (page 498)

 

    Problem Set 6 (due Mar 12)

        Exercise 5 (page 501)

        Exercise 7 (page 502)

        Exercise 1, 2 (page 518)


Course Overview

ME235A Introduces fundamental concepts and technologies of primal finite element methods for linear elliptic boundary value problems. Topics covered include : overview of finite element method for a one-dimensional model problem including the weak, Galerkin and matrix forms, error analysis and superconvergence; extension of the finite element method for heat equation and elasticity in two and three space dimensions; element formulations and data structures; analysis of errors and convergence of approximation; treatment of constraints and variational crimes. For computing assignments, students will work with and extend a simple but effective finite element code using Matlab and use the Matlab PDE Toolnox for convenient pre- and post-processing features.

ME235B Treats the development and analysis of finite element methods for linear parabolic (time-dependent heat equation), linear hyperbolic (structural dynamics) and eigenvalue (free vibration and stability) problems.

ME235C Introduction to finite element formulations for nonlinear elliptic, parabolic and hyperbolic problems; methods for solving nonlinear algebraic systems.


Staff

        Professor : Peter M. Pinsky

        pinsky@stanford.edu

        Office : Durand 275

        Phone : 3-9327

        Office Hours : TBA

 

        TA : Jee Rim

        jrim@stanford.edu

        Office : Durand 266

        Phone : 3-8104

        Office Hours : TBA

 


Class Schedule

    TTH 2:45 - 4:00

     530-127

 


Text (Required)

    The Finite Element Method : Linear Static and Dynamic Finite Element Analysis

    Thomas J. R. Hughes, Dover, 2000

 


Other Reading

   The Finite Element Method, Zienkiewicz and Taylor, two volumes, McGraw-Hill, 2000

    Computational Differential Equations, Eriksson et al., Cambridge, 1996

    An Analysis of FEM, Strang and Fix, Prentice-Hall, 1974

    FEM for Elliptic Problems, Ciarlet, North-Holland, 1978

    Mathematical Theory of FEM, Brenner and Scott, Springer, 1994

    Numerical Solution of PDE by FEM, Johnson, Cambridge, 1990

    Finite Element Procedures, K-J Bathe, Prentice-Hall, 1996

    Concepts and Applications of FEM, Cook et al., Wiley, 1988

 


Prerequisites

 


Matlab Help